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Equivalence Relations

Definition 1: A relation on a set A is called an equivalence relation if it is
reflexive, symmetric, and transitive.

Definition 2: Two elements a, and b that are related by an equivalence
relation (Z5{/; 9% %) are called equivalent. The notationa b is often
used to denote that a and b are equivalent elements with respect to a
particular equivalence relation.
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Strings

Example: Suppose that R is the relation on the set of strings of English
letters such that aRb if and only if I(a) = [(b), where I(x) is the length of the
string x. Is R an equivalence relation?

Solution: Show that all of the properties of an equivalence relation hold.
@ Reflexivity: Because I(a) = I(a), it follows that aRa for all strings a.

x> Symmetry: Suppose that aRb. Since l(a) = I(b), I(b) = I(a) also holds
and bRa.

@ Transitivity: Suppose that aRb and bRc. Since [(a) = I[(b),and I(b) = l(c),
[(a) = [(a) also holds and aRc.
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Congruence Modulo m

Example: Let m be an integer with m > 1. Show that the relation
R ={(a,b) | a= b (mod m)}

is an equivalence relation on the set of integers.

Solution: Recall that a = b (mod m) if and only if m divides a — b.
= Reflexivity: a = a (mod m) since a — a = 0 is divisible by m since 0=0-m.

= Symmetry: Suppose that a = b (mod m). Then a — b is divisible by m, and so a — b = km,
where k is an integer. It follows that b — a = (— k) m, so b = a (mod m).

o Transitivity: Suppose that a = b (mod m) and b = ¢ (mod m). Then m divides both a — b
and b — c. Hence, there are integers k and [ with a—b=km and b — c =Im. We
obtain by adding the equations:

a—c=(a—>b) +(b—c) =km+Im=(k+1) m.
Therefore, a = ¢ (mod m).
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Divides

Example: Show that the “divides” relation on the set of positive integers is not an
equivalence relation.

Solution: The properties of reflexivity, and transitivity do hold, but there relation is not
transitive. Hence, “divides” is not an equivalence relation.

2 Reflexivity: a a for all a.

2 Not Symmetric: For example, 2 4, but4 2. Hence, the relation is not symmetric.

2 Transitivity: Suppose that a divides b and b divides c. Then there are positive integers k and [
such that b = ak and ¢ = bl. Hence, ¢ = a(kl), so a divides c. Therefore, the relation is
transitive.



Equivalence Classes

Definition 3: Let R be an equivalence relation on a set A. The set of all
elements that are related to an element a of A is called the equivalence class
(Z51175) of a. The equivalence class of a with respect to R is denoted by [a]j.

When only one relation is under consideration, we can write [a], without the
subscript R, for this equivalence class.

Note that [a]z={s|(a,s) R}.

If b [alg then b is called a representative of this equivalence class. Any
element of a class can be used as a representative of the class.

The equivalence classes of the relation congruence modulo m are called the
congruence classes modulo m (Lim 9 /7/A#25) . The congruence class of
an integer a modulo m is denoted by [a],, so [a],, = {..., a—2m, a—m, a+2m,
a+2m, ... }. For example,

OL2f -8 2048 ) Lot 73159 )

Lol —6=226 10 )} Bl 51 37 11 )
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Equivalence Classes and Partitions

Theorem 1: let R be an equivalence relation on a set A. These
statements for elements a and b of A are equivalent:

(i) aRb
(i) [a] = [b]
(iit) [a] n [b] =
Proof: We show that (i) implies (ii). Assume that aRb. Now suppose thatc [a].
Then aRc. Because aRb and R is symmetric, bRa. Because R is transitive and

bRa and aRc, it follows that bRc. Hence, ¢ [b]. Therefore, [a] [b]. A similar

argument (omitted here) shows that [b] [a]. Since [a] [b]and [b] [a], we
have shown that [a] = [b].

(see text for proof that (ii) implies (iii) and (iii) implies (i))
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Partition of a Set

Definition: A partition of a set S is a collection of disjoint nonempty
subsets of S that have S as their union. In other words, the collection of
subsets A;, wherei I (where I is an index set), forms a partition of S if
and only if

wA;Z fori |
wA; N A= wheni#j

wand

UAi:S.

el

A Partition of a Set
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An Equivalence Relation Partitions a Set

Let R be an equivalence relation on a set A. The union of all the
equivalence classes of R is all of A, since an element a of A is in its own
equivalence class [a];. In other words,

U[Q]R:A.

acA
From Theorem 1, it follows that these equivalence classes are either equal
or disjoint, so [a]z N|[b]g= when [a]z #Z [b].
Therefore, the equivalence classes form a partition of A, because they split
A into disjoint subsets.




__AnEquivalence Relation Partitions a Set

(continued)

Theorem 2: Let R be an equivalence relation on a set S. Then the equivalence classes of R
form a Ipartition of S. Conversely, given a partition {A; | i I} of the set S, there is an
equivalence relation R that has the sets A;, i I, as its equivalence classes.

Proof: We have already shown the first part of the theorem.

For the second part, assume that {A; | i [} is a partition of S. Let R be the relation on S
consisting of the pairs (x, y) where x and y belong to the same subset A; in the partition. We
must show that R satisfies the properties of an equivalence relation.

@ Reflexivity: Foreverya S, (a,a) R, because a is in the same subset as itself.

= Symmetry: If (a,b) R, then b and a are in the same subset of the partition, so (b,a) R.

@ Transitivity: If (a,b) Rand (b,c) R,then aand b are in the same subset of the partition, as are
b and c. Since the subsets are disjoint and b belongs to both, the two subsets of the partition must
be identical. Therefore, (a,c) R since a and ¢ belong to the same subset of the partition.



Partial Orderings

Section 9.6
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Section Summary

Partial Orderings and Partially-ordered Sets
Lexicographic Orderings

Hasse Diagrams

Lattices (not currently in overheads)

Topological Sorting (not currently in overheads)
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Partial Orderings

Definition 1: A relation R on a set S is called a partial ordering, or partial
order, if it is reflexive, antisymmetric, and transitive. A set together with a
partial ordering R is called a partially ordered set, or poset (fl7/7%) , and
is denoted by (S, R). Members of S are called elements of the poset.




Partial Orderings (continued)

Example 1: Show that the “greater than or equal” relation (=) is a partial
ordering on the set of integers.

wReflexivity: a = a for every integer a.
wAntisymmetry:Ifa=band b=a, then a = b.
wTransitivity: lfa=band b= c, thena =c.

These properties all follow from the order axioms for the integers.
(See Appendix 1).
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Partial Orderings (continued)

Example 2: Show that the divisibility relation ( ) is a partial ordering on
the set of integers.

wReflexivity: a a for all integers a. (see Example 9 in Section 9.1)

wAntisymmetry: If a and b are positive integers with a | band b | a, then a = b.
(see Example 12 in Section 9.1)

wTransitivity: Suppose that a divides b and b divides c. Then there are positive
integers k and [ such that b = ak and ¢ = bl. Hence, ¢ = a(kl), so a divides c.
Therefore, the relation is transitive.

(Z+, ) is a poset.
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Partial Orderings (continued)

Example 3: Show that the inclusion relation ( ) is a partial ordering on
the power set of a set S.

wReflexivity: A A whenever A Is a subset of S.

wAntisymmetry: If A and B are positive integerswith A BandB A,
then A = B.

wTransitivity: IfA Band B C,thenA C.

The properties all follow from the
definition of set inclusion.




Comparability

Definition 2: The elements a and b of a poset (S, ) are comparable
CaflEf) if eithera borb a.When aand b are elements of S so
that neither a bnorb a,thenaand b are called incomparable.

The symbol < isused to denote the relation in any
poset.

Definition 3: If (S, ) isa poset and every two elements of S are
comparable, S is called a totally ordered (/%) or linearly ordered set

(Z/)7) ,and is called a total order or a linear order. A totally
ordered set is also called a chain.

Definition 4: (S, )isa well-ordered set ( J¥%2) ifitisa poset such
that isa total ordering and every nonempty subset of S has a least
element.
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Lexicographic Order

Definition: Given two posets (A;, 1) and (A,, ,), the lexicographic ordering (74

Wi/7) onA; A, isdefined by specifying that (a,, a,) is less than (b,,b,), that is,
(a1) a2) (bl)bZ);

eitherifa;, .b,orifa;=b;anda, ,Db,.

This definition can be easily extended to a lexicographic ordering on strings (see

text).

Example: Consider strings of lowercase English letters. A lexicographic ordering
can be defined using the ordering of the letters in the alphabet. This is the same
ordering as that used in dictionaries.

wdiscreet  discrete, because these strings differ in the seventh positionand e t.

wdiscreet  discreetness, because the first eight letters agree, but the second string is
longer.
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Hasse Diagrams

Definition: A Hasse diagram is a visual representation of a partial ordering that
leaves out edges that must be present because of the reflexive and transitive
properties.

(a) (b) ()

A partial ordering is shown in (a) of the figure above. The loops due to the
reflexive property are deleted in (b). The edges that must be present due to the
transitive property are deleted in (c). The Hasse diagram for the partial ordering
(a), is depicted in (c).
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Procedure for Constructing a Hasse Diagram

To represent a finite poset (S, ) using a Hasse diagram, start with the
directed graph of the relation:

=oRemove the loops (a, a) present at every vertex due to the reflexive property.

=Remove all edges (x, y) for which thereisan element z Ssuchthatx z
and z y. These are the edges that must be present due to the transitive
property.

wArrange each edge so that its initial vertex is below the terminal vertex.
Remove all the arrows, because all edges point upwards toward their terminal
vertex.



