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Section Summary
Equivalence Relations
Equivalence Classes
Equivalence Classes and Partitions



Equivalence Relations
   Definition 1:  A relation on a set A is called an equivalence relation if it is 

reflexive, symmetric, and transitive. 

   Definition 2:  Two elements a, and b that are related by an equivalence 
relation（等价关系） are called  equivalent.  The notation a ∼ b is often 
used to denote that a and b are equivalent elements with respect to a 
particular equivalence relation.



Strings
   
     Example: Suppose that R is the relation on the set of strings of English 

letters such that aRb if and only if l(a) = l(b), where l(x) is the length of the 
string x. Is R an equivalence relation? 

    Solution: Show that all of the properties of an equivalence relation hold.
Reflexivity: Because l(a) = l(a), it follows that aRa for all strings a. 
 Symmetry: Suppose that aRb.  Since l(a) = l(b), l(b) = l(a) also holds  

and bRa. 
 Transitivity: Suppose that aRb and bRc. Since l(a) = l(b),and l(b) = l(c), 

l(a) = l(a) also holds and aRc. 

         



Congruence Modulo m
   Example:  Let m be an integer with m > 1. Show that the relation 
         R = {(a,b) | a ≡ b (mod m)} 
    is an equivalence relation on the set of integers.

   Solution:  Recall that a ≡ b (mod m) if and only if m  divides a − b.
Reflexivity:  a ≡ a (mod m) since a − a = 0 is divisible by m since              0 = 0 ∙ m.
Symmetry:  Suppose that a ≡ b (mod m). Then a − b is divisible by m, and so a − b = km, 

where k is an integer. It follows that b − a = (− k) m, so b ≡ a (mod m). 
Transitivity: Suppose that a ≡ b (mod m) and b ≡ c (mod m). Then m divides both a − b 

and b − c. Hence, there are integers k and l with           a − b = km  and b − c = lm. We 
obtain by adding the equations: 

               a − c = (a − b)  + (b − c)  = km + lm = (k + l) m.
    Therefore, a ≡ c (mod m).



Divides
   Example:  Show that the “divides” relation on the set of positive integers is not an 

equivalence relation.
   Solution: The properties of reflexivity, and transitivity do hold, but there relation is not 

transitive. Hence, “divides” is not an equivalence relation.
Reflexivity:  a ∣ a for all a. 
Not Symmetric: For example, 2 ∣ 4, but 4 ∤ 2. Hence, the relation is not symmetric. 
Transitivity:  Suppose that a divides b and b divides c. Then there are positive integers k and l 

such that b = ak and c = bl. Hence, c = a(kl), so a divides c. Therefore, the relation is 
transitive. 

         



Equivalence Classes
     Definition 3:  Let R be an equivalence relation on a set A.  The set of all 

elements that are related to an element a of A is called the  equivalence class 
（等价类） of a. The equivalence class of a with respect to R is denoted by [a]R.  

     When only one relation is under consideration, we can write [a], without the 
subscript R,  for this equivalence class. 

 
      Note that  [a]R = {s|(a,s) ∈ R}.

 If  b ∈ [a]R, then b is called a representative of this equivalence class. Any 
element of a class can be used as a representative of the class. 

 The equivalence classes of the relation congruence modulo m are called the 
congruence classes modulo m（以m为模的同余类）. The congruence class of 
an integer a modulo m is denoted by [a]m, so [a]m = {…, a−2m, a−m, a+2m, 
a+2m, … }. For example, 

   [0]4 = {…, −8, −4 , 0, 4 , 8 , …}                        [1]4 = {…, −7, −3 , 1, 5 , 9 , …}

          [2]4 = {…, −6, −2 , 2, 6 , 10 , …}                      [3]4 = {…, −5, −1 , 3, 7 , 11 , …}



Equivalence Classes and Partitions
   Theorem  1:  let R be an equivalence relation on a set A.  These 

statements for elements a and b of A are equivalent: 
    (i)   aRb
    (ii)  [a] = [b]
    (iii) [a] ∩ [b] = ∅
Proof: We show that (i) implies (ii). Assume that aRb. Now suppose that c ∈ [a]. 

Then aRc. Because aRb and R is symmetric, bRa. Because R is transitive and 
bRa and aRc, it follows that bRc. Hence, c ∈ [b]. Therefore, [a]⊆ [b].  A similar 
argument (omitted here) shows that [b]⊆ [a]. Since [a]⊆ [b] and [b]⊆ [a],  we 
have shown that [a] = [b].

(see text for proof  that (ii) implies (iii) and (iii) implies (i))



Partition of a Set
   Definition: A partition of a set S is a collection of disjoint nonempty 

subsets of S that have S as their union. In other words, the collection of 
subsets Ai, where i ∈ I (where I is an index set), forms a partition of S if 
and only if
Ai ≠ ∅ for i ∈ I,
Ai ∩ Aj=∅ when i ≠ j,
and 

A Partition of a Set



An Equivalence Relation Partitions a Set
Let R be an equivalence relation on a set A.  The union of all the 

equivalence classes of R is all of A, since  an element a of A is in its own 
equivalence class [a]R.  In other words, 

   

From Theorem 1, it follows that these equivalence classes are either equal 
or disjoint, so [a]R ∩[b]R=∅ when [a]R ≠ [b]R.
Therefore, the equivalence classes form a partition of A, because they split 

A into disjoint subsets. 



An Equivalence Relation Partitions a Set 
(continued)
    Theorem 2: Let R be an equivalence relation on a set S.  Then the equivalence classes of R 

form a partition of S. Conversely, given a partition {Ai | i ∈  I} of the set S, there is an 
equivalence relation R that has the sets Ai, i ∈ I, as its equivalence classes. 

     Proof: We have already shown the first part of the theorem.
     For the second part, assume that {Ai | i ∈ I} is a partition of S. Let R be the relation on S 

consisting of the pairs (x, y) where x and y belong to the same subset Ai in the partition. We 
must show that R satisfies the properties of an equivalence relation.
Reflexivity: For every a ∈ S, (a,a) ∈ R, because a is in the same subset as itself. 
 Symmetry: If (a,b) ∈ R, then b and a are in the same subset of the partition, so (b,a) ∈ R. 
 Transitivity: If (a,b) ∈ R and  (b,c) ∈ R, then a and b are in the same subset of the partition, as are  

b and c. Since the subsets are disjoint and b belongs to both, the  two subsets of the partition must 
be identical. Therefore, (a,c) ∈ R since a and c belong to the same subset of the partition. 
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Section Summary
Partial Orderings and Partially-ordered Sets
Lexicographic Orderings
Hasse Diagrams 
Lattices (not currently in overheads)
Topological Sorting (not currently in overheads)



Partial Orderings
   Definition 1: A relation R on a set S is called a partial ordering, or partial 

order, if it is reflexive, antisymmetric, and transitive. A set together with a 
partial ordering R is called a partially ordered set, or poset（偏序集）, and 
is denoted by (S, R). Members of S are called elements of the poset. 



Partial Orderings (continued)
   Example 1: Show that the “greater than or equal” relation (≥) is a partial 

ordering on the set of integers.
Reflexivity:  a ≥ a for every integer a.
Antisymmetry: If a ≥ b and b ≥ a , then a = b.
Transitivity: If a ≥ b and b ≥ c , then a ≥ c.

These properties all follow from the order axioms for the integers. 
(See Appendix 1).



Partial Orderings (continued)
   Example 2: Show that the divisibility relation (∣) is a partial ordering on 

the set of integers.
Reflexivity: a ∣ a for all integers a. (see Example 9 in Section 9.1) 
Antisymmetry: If a and b are positive integers with a | b and b | a, then a = b. 

(see Example 12 in Section 9.1)
Transitivity: Suppose that a divides b and b divides c. Then there are positive 

integers k and l such that b = ak and c = bl. Hence, c = a(kl), so a divides c. 
Therefore, the relation is transitive. 

(Z+, ∣) is a poset.



Partial Orderings (continued)
   Example 3: Show that the inclusion relation (⊆) is a partial ordering on 

the power set of a set S.
Reflexivity: A ⊆ A  whenever A  is a subset of S. 
Antisymmetry: If A and B are positive integers with        A ⊆ B and B ⊆ A, 

then A = B.
Transitivity: If A ⊆ B and B ⊆ C, then A ⊆ C.

The properties all follow from the 
definition of set inclusion.



Comparability
    Definition 2: The elements a and b of a poset (S,≼ ) are comparable

（可比的） if either a ≼ b or b ≼ a. When a and b are elements of S so 
that  neither          a ≼ b nor b ≼ a, then a and b are called incomparable.

     Definition 3: If  (S,≼ ) is a poset and every two elements of S are 
comparable, S is called a totally ordered（全序） or linearly ordered set
（线序）, and ≼ is called a total order or a linear order.  A totally 
ordered set is also called a chain. 

    Definition 4: (S,≼ ) is a well-ordered set（良序集） if it is a poset such 
that ≼ is a total ordering and every nonempty subset of S has a least 
element. 

 

The symbol ≼  is used to  denote the relation in any 
poset. 



Lexicographic Order
   Definition: Given two posets (A1,≼1) and (A2,≼2), the lexicographic ordering（字典
顺序）  on A1 ⨉ A2  is defined by specifying that  (a1, a2) is less than (b1,b2), that is,

                 (a1, a2) ≺ (b1,b2), 
    either if a1 ≺1 b1 or if a1 = b1 and a2 ≺2 b2.
This definition can be easily extended to a lexicographic ordering on strings (see 

text).
    Example:  Consider strings of lowercase English letters. A lexicographic ordering 

can be defined using the ordering of the letters in the alphabet. This is the same 
ordering as that used in dictionaries.
discreet ≺ discrete, because these strings differ in the seventh position and e ≺ t. 
discreet ≺ discreetness, because the first eight letters agree, but the second string is 

longer. 



Hasse Diagrams
   Definition: A Hasse diagram is a visual representation of a partial ordering that 

leaves out edges that must be present because of the reflexive and transitive 
properties.

    
   

   A partial ordering is shown in (a) of the figure above. The loops due to the 
reflexive property are deleted in (b). The edges that must be present due to the 
transitive property are deleted in (c). The Hasse diagram for the partial ordering 
(a), is depicted in (c). 



Procedure for Constructing a   Hasse Diagram
To represent a finite poset (S,≼ )  using a Hasse diagram, start with the 

directed graph of the relation:
Remove the loops (a, a) present at every vertex due to the reflexive property.
Remove all edges (x, y) for which there is an element       z ∈ S such that x ≺ z 

and z ≺ y. These are the edges that must be present due to the transitive 
property.

Arrange each edge so that its initial vertex is below the terminal vertex. 
Remove all the arrows, because all edges point upwards toward their terminal 
vertex. 


